# 给兴文理学院

# 硕士研究生招生考试业务课考试大纲

考试科目: 数学分析 科目代码: 651

#### 一、考试目的和要求

《数学分析》为招收数学专业硕士生而拟设的具有选拔功能的考试。 其主要目的是测试考生对数学分析最基本内容的理解、掌握和熟练程度。要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。

#### 二、考试方法

闭卷。考试不允许带计算器。

#### 三、考试题型

判断题、计算题、证明题等

#### 四、考试知识点

#### (一)实数集与函数

上确界、下确界、确界原理;函数复合、基本初等函数、初等函数及常用特性;基本初等不等式及应用。

#### (二) 数列极限

数列极限的  $\varepsilon - N$  定义;求解各类数列的极限;收敛数列的常用性质;数列收敛的判别条件

#### (三)函数极限

函数极限的 $\varepsilon$ - $\delta$ 定义及其它变式;函数极限存在的条件及判别,应用两个重要极限求解较复杂的函数极限。无穷小量、无穷大量的概念;会应用等价无穷小求极限。

#### (四)函数连续性

函数在某点及在区间上连续的几种等价定义,尤其是 $\varepsilon$ - $\delta$ 定义;函数间断点及类型;闭区间上连续函数的三大性质及其应用;区间上一致连续函数的定义、判断和应用。

#### (五) 导数和微分

导数的定义、几何意义,复合函数、参量函数、隐函数求导;微分的概念,复合函数微分及一阶微分形式不变性。连续、可导、可微之间的关系;高阶导数

的各种求解方法。

# (六) 微分中值定理及其应用

微分中值定理及其应用,洛必达法则求极限,单调区间、极值、最值的求法; Taylor 公式思想、方法及应用;曲线的凹凸性及拐点的求法,并掌握凸函数及 性质;应用函数单调性、凹凸性等等工具证明函数不等式。

#### (七) 实数完备性

实数完备性定理,闭区间上连续函数有界性、最值性、介值性、一致连续性 定理。

## (八) 不定积分

原函数与不定积分,换元积分法、分部积分法,有理函数的积分,三角函数 有理式、某些简单无理式的积分。

#### (九) 定积分

积分的定义和性质,微积分基本定理熟练应用;换元法、分部积分法计算定积分;可积条件和可积类。

#### (十) 定积分的应用

平面图形面积的计算;旋转体或已知截面面积的体积;定积分求孤长、旋转体的侧面积。

#### (十一) 反常积分

反常积分收敛性定义,反常积分敛散性判别法(Cauchy、Abel、Dirichlet 三大判别法)。

#### (十二) 数项级数

级数收敛和发散的定义、性质,正项级数收敛的各种判别法,条件收敛、绝对收敛及 Leibniz、Abel、Dirichlet 三大判别法,条件收敛、绝对收敛级数的特殊性质。

#### (十三) 函数列与函数项级数

函数列、函数项级数一致收敛的  $\varepsilon$  –N 定义、一致收敛的判别法;一致收敛 函数列和一致收敛函数项级数的性质。

#### (十四)幂级数

幂级数收敛域、收敛半径以及和函数的求法,知道幂级数的若干性质;函数的幂级数展开的方法;幂级数的和函数及某些数项级数的和。

#### (十五) 傅里叶级数

2π 周期的付里叶系数公式,会求函数的傅里叶展式,余弦级数,正弦级数的求法;收敛性定理,掌握 Bessel 不等式、Lebesgue 引理等几个重要定理; Parseval 等式并运用其求某些数项级数的和。

#### (十六) 多元函数的极限与连续

二元函数重极限、累次极限计算;二元函数连续性及其性质。

#### (十七) 多元函数微分学

偏导数和全微分,会计算高阶偏导数(尤其是二阶偏导数),多元复合函数求导的链式法则、理解一阶全微分形式不变性。二元函数连续、偏导数连续、可微、可偏导之间的多角关系;二元函数中值定理与 Taylor 公式;多元函数极值、最值的求解方法,并会运用于解决实际问题。方向导数与梯度。

#### (十八) 隐函数定理及其应用

隐函数(组)定理,隐函数(组)的微分,空间曲线的切线与法平面,空间曲面的切平面与法线;条件极值的Lagrange 乘数法。

#### (十九) 含参量积分

含参量正常积分的定义及性质,含参量反常积分一致收敛定义、判别法,一致收敛含参量反常积分的性质(连续性、可导性、可积性),Euler 积分并用于计算某些反常积分,积分号下求导数等方法计算某些积分和反常积分。

## (二十) 曲线积分

第一、二型曲线积分,格林公式,二型曲线积分与路径无关的条件,会求 全微分式的原函数。

#### (二十一) 重积分

二重积分、三重积分的直角坐标计算、变量替换,极坐标变换、柱坐标变换球坐标变换及广义球坐标变换,重积分几何应用,会求曲面面积、重心坐标等。

#### (二十二) 曲面积分

第一、二型曲面积分的概念及物理意义;了解两种曲面积分的转换关系,两型曲面积分的直角坐标计算公式;Gauss 公式和 Stokes 公式。

# 参考教材或主要参考书:

- 1. 数学分析(上、下册), 华东师范大学数学系编, 高等教育出版社.
- 2. 数学分析中的典型问题与方法, 裴礼文, 高等教育出版社。